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Abstract Earthquakes do not fit into the class of models we discussed in
Physics 219B. Earthquakes and fault systems instead are an example of a self-
organized critical system. In this paper I will explain the Virtual California
earthquake simulator, and show that the simulated fault system in California
displays power law correlations exemplary of critical behavior.

1 Self-Organized Criticality

Earthquakes are believed to be in a class of complex dynamical systems called
self-organized critical phenomena. In simple dynamical systems with few degrees
of freedom, power law correlations can arise when one fine tunes a parameter to
arrive at a critical point. But for dynamical systems found in nature there are
no scientists running about tuning various knobs, so how can apparent critical
behavior arise?

Research on the statistical properties of these dynamical systems in the late
1980s, pioneered by Per Bak, has shown that certain interacting dynamical sys-
tems — called self-organizing critical systems — naturally evolve into a statis-
tically stationary state. This state is also critical, with power law spatial and
temporal correlations. It is essential that these systems are dissipative and are
spatially extended with an innumerably large number of degrees of freedom. En-
ergy must be fed into these systems in a uniform manner, either into the bulk
or through the boundaries. The earth’s crust, subjected to forces from tectonic
plate motion, may be viewed as a kind of self-organizing critical system [1].

For the fault systems in the earth’s crust, this self-organized critical state is
a balance between local geologic forces, which adjusts the probability that a slip
on a fault segment will propagate to a neighboring segment close to unity. The
probability of this activity branching to neighboring fault segments is balanced
by the probability that the slip has sufficiently reduced the local stress. This
stationary state is often interpreted as a critical chain reaction. At this critical
state there is no characteristic time, space, or energy scale, and all spatial and
temporal correlations are power laws. For earthquakes the power law size dis-
tribution is directly related to the fractal structure of fault systems. The main
assumptions from self-organized critical phenomena applicable to the study of
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fault systems are that the system is large and that the driving force, in our case
tectonic plate motion, is slow.

2 Power Laws and Scaling in Seismology

In 1954 the first empirical evidence for earthquakes exhibiting power laws was
introduced by Gutenberg and Richter [4]. They put forth the now widely accepted
scaling relation between earthquake occurrence and magnitude

N(≥ m) = 10 a−bm (1)

where a and b are empirical constants and N is the cumulative number of
earthquakes with magnitude greater than m. This is the most widely accepted
evidence supporting the idea of fault systems as an example of self-organized
criticality. Global seismic data from the Advanced National Seismic System’
global earthquake catalog (www.quake.geo.berkeley.edu/cnss/) catalog is plotted
in Figure 1 for the years 1990-2010, showing close agreement with equation 1. The
best fit parameters were obtained by a least squares fit to the data between 5.5 ≥
m ≥ 7.5. The slight deficit below magnitude 5 is attributed to the sensitivity limit
of seismic monitoring equipment. The deficit at m ≥ 7.7 is more controversial.
It is usually attributed to the transition in topology from small earthquakes with
similar lengths and depths to large earthquakes with lengths much larger than
depths [10].

There has been debate as to whether Gutenberg-Richter scaling should be
evaluated globally or it should be taken to apply only within regional fault sys-
tems [10]. Indeed if fault behavior is due to regional fault geometry, it would
seem natural to apply it on a regional basis. The difference in agreement with
Gutenberg-Richter scaling on a global or regional scale is seen in comparing Fig-
ures 1 and 2.

In 1997 Turcotte [11] showed that the Gutenberg-Richter scaling relation is
equivalent to a power law scaling between N and the earthquake rupture area Ar:

N ∼ A−b
r (2)

Equation 2 provides further evidence that earthquake behavior is ultimately
tied to local fault geometry. This correlation is measured from simulations in
Figure 3.

Omori’s Law is another example of seismological power law correlation be-
tween frequency and magnitude of an earthquakes aftershock. The law essentially
states that for every magnitude 8.0 earthquake there will be 10 magnitude 7.0
aftershocks, 100 magnitude 6.0 aftershocks, 1000 magnitude 5.0 aftershocks, etc.
Following a large earthquake, likely above the level predicted by the relation in
equation 1, it is believed that a series of smaller earthquakes act to fill in the rest
of the magnitude range to push the system back into long term compliance with
equation 1, [10].
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Figure 1: Global seismic data from 1990-2010. Best fit line to equation 1 for 5.5 ≥ m ≥ 7.5 is
shown in grey.

In the following sections I will introduce the relationship between earthquake
simulations and statistical mechanics. Then I will outline the simulation pro-
gram that I use in my research — Virtual California — and show that it fits the
definition of a self-organized critical system. Lastly I will show how observed Cal-
ifornia and global seismicity compare to ensemble averages of the simulated fault
systems, showing that indeed the simulations accurately reproduce the complex
dynamics of an interacting fault system.

3 Simulations in Ensemble-domain vs. Time-domain

Earthquake fault simulations fall into two general categories: time-domain sim-
ulations and ensemble-domain simulations. Time-domain simulations are highly
analytical, taking input fault parameters current states then solving the governing
differential equations using finite-element methods to evolve the system in time to
develop a time dependent fault model. Besides being incredibly computationally
intensive, the output from time-domain simulations are quite sensitive to small
perturbations in the initial conditions. Furthermore, to be applied over any spa-
tially extent region, it requires extensive field measurements of fault parameters
and current fault conditions.

An ensemble-domain simulation avoids such problems by taking only a few
observed fault parameters and then looking for the most likely future states of
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the system. The output is then not a deterministic time evolution of the system,
but rather it is a single realization obtained by a sort of importance sampling from
the ensemble of possible future states of the fault system. A familiar example of
this approach is the Metropolis Monte Carlo algorithm. Virtual California is an
example of an ensemble-domain simulation whose output from each simulation
is a member of an ensemble in configuration space.

4 Virtual California Earthquake Simulator

Virtual California is a computer program that simulates topologically realistic
driven earthquake fault systems in California [7, 3, 8]. Virtual California is de-
signed to quickly simulate many thousands of events over long periods of sim-
ulated time, producing a rich dataset to study the statistical properties of the
fault system (described in detail in [8]). Essentially based on the slider-block
model popular in the fields of complexity and statistical mechanics, the simula-
tor consists of three major components: a fault model, an interaction model and
an event model.

4.1 Fault model

Despite what the name implies, the only part of Virtual California that is specific
to California is the fault model. Fault topology, long-term slip rates, and frictional
parameters are derived from field observations to define the fault model. The
model that is currently in use is based on the Uniform California Earthquake
Rupture Forecast version 2, described in [2]. The model consists of 65 major
fault sections that roughly correspond to the known fault system in California,
with some larger faults modeled by multiple sections (e.g. the San Andreas
fault). The fault plane in each section is meshed into square elements that are
approximately 3km x 3km, for a total of 8395 elements. Each element is given a
stress threshold and a slip velocity along a fixed vector, obtained from geologic
field-measured values. The failure stress is an inherently unmeasurable quantity,
and is tuned such that the simulation reproduces observed earthquake recurrence
times for that fault section.

4.2 Interaction model

Interactions between different fault elements are governed by Okada’s quasi-static
elastic half-space Greens’ functions [6]. The effect between elements (not only
nearest neighbors, long range interactions are allowed) depends on their relative
position and orientation and on the direction of their slip displacements. The
interactions are quasi-static because the rate of change of the fault geometry is
extremely slow. The average slip velocity is on the order of 2x10−10m/s, meaning
that over 10,000 years of simulated time the average slip rate produces about 50
meters in displacement which is less than 0.1% of the size of the fault element.
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Figure 2: An average of 20 realizations of 200 years of California seismic history. Best fit line
to equation 1 for 5.0 ≥ m ≥ 7.5 is shown in grey. The observed seismicity for California with
uncertainty given by UCERF [2].

4.3 Event model

“Backslip” is applied to the elements at geologically-observed rates. Backslip
does not cause the elements to move, but loads stress on the element because
of the accumulation of a slip deficit (a distance it “should have” moved given
the slip rate and duration). This continues to build stress on the elements until
the frictional parameters (coefficient of friction) are exceeded, then the segment
actually begins to slip. The slip continues to drop the stress on the local element
and transfer it to the surrounding elements via the elastic Greens’ functions until
a residual stress is reached, plus or minus a random overshoot or undershoot
of typically 10%. The transferred stress results in propagating ruptures (groups
of elements slipping together) throughout the system, a simulated earthquake
(described in detail in [3, 5]).

5 Simulations vs. Observation

I used 20 Virtual California simulations each of 200 years of seismic history to
approximate the ensemble average for comparison to equation 1 for California
earthquakes. I also compared this average to the observed seismicity in Califor-
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Figure 3: A match to equation 2 from a single 200 year simulated seismic history for California.
Equation 2 plotted in red.

nia as reported by [2], shown in Figure 2. As shown, the simulated ensemble
average closely matches the observed seismicity in California. The deficiency of
earthquakes below magnitude 6.0 is a result of the finite size of the fault elements.
With a finer grid resolution, the fraction of smaller earthquakes would increase.

Shown in Figure 3, I was able to reproduce the relation in equation 2 with a
single 200 year simulation. The previous figures show that indeed the simulated
fault system is in a self-organized critical state. Furthermore the similarity of the
simulations to observed seismicity demonstrate the power of statistical mechanics
in shedding light on such complex natural processes.
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